Protocadherin-18b interacts with Nap1 to control motor axon growth and arborization in zebrafish
نویسندگان
چکیده
The proper assembly of neural circuits during development requires the precise control of axon outgrowth, guidance, and arborization. Although the protocadherin family of cell surface receptors is widely hypothesized to participate in neural circuit assembly, their specific roles in neuronal development remain largely unknown. Here we demonstrate that zebrafish pcdh18b is involved in regulating axon arborization in primary motoneurons. Although axon outgrowth and elongation appear normal, antisense morpholino knockdown of pcdh18b results in dose-dependent axon branching defects in caudal primary motoneurons. Cell transplantation experiments show that this effect is cell autonomous. Pcdh18b interacts with Nap1, a core component of the WAVE complex, through its intracellular domain, suggesting a role in the control of actin assembly. Like that of Pcdh18b, depletion of Nap1 results in reduced branching of motor axons. Time-lapse imaging and quantitative analysis of axon dynamics indicate that both Pcdh18b and Nap1 regulate axon arborization by affecting the density of filopodia along the shaft of the extending axon.
منابع مشابه
A zebrafish model of lethal congenital contracture syndrome 1 reveals Gle1 function in spinal neural precursor survival and motor axon arborization.
In humans, GLE1 is mutated in lethal congenital contracture syndrome 1 (LCCS1) leading to prenatal death of all affected fetuses. Although the molecular roles of Gle1 in nuclear mRNA export and translation have been documented, no animal models for this disease have been reported. To elucidate the function of Gle1 in vertebrate development, we used the zebrafish (Danio rerio) model system. gle1...
متن کاملOlfactomedin 1 interacts with the Nogo A receptor complex to regulate axon growth.
Olfm1, a secreted highly conserved glycoprotein, is detected in peripheral and central nervous tissues and participates in neural progenitor maintenance, cell death in brain, and optic nerve arborization. In this study, we identified Olfm1 as a molecule promoting axon growth through interaction with the Nogo A receptor (NgR1) complex. Olfm1 is coexpressed with NgR1 in dorsal root ganglia and re...
متن کاملCollagen XIXa1 is crucial for motor axon navigation at intermediate targets.
During development, motor axons navigate from the spinal cord to their muscle targets in the periphery using stereotyped pathways. These pathways are broken down into shorter segments by intermediate targets where axon growth cones are believed to coordinate guidance cues. In zebrafish stumpy mutants, embryonic development proceeds normally; however, as trunk motor axons stall at their intermed...
متن کاملPlexinA3 restricts spinal exit points and branching of trunk motor nerves in embryonic zebrafish.
The pioneering primary motor axons in the zebrafish trunk are guided by multiple cues along their pathways. Plexins are receptor components for semaphorins that influence motor axon growth and path finding. We cloned plexinA3 in zebrafish and localized plexinA3 mRNA in primary motor neurons during axon outgrowth. Antisense morpholino knock-down led to substantial errors in motor axon growth. Er...
متن کاملRegulation by glycogen synthase kinase-3beta of the arborization field and maturation of retinotectal projection in zebrafish.
The retinotectal projection is one of the best systems to study the molecular basis of synapse formation in the CNS because of the well characterized topographic connections and activity-dependent refinement. Here, we developed a presynaptic neuron-specific gene manipulation system in the zebrafish retinotectal projection in vivo using the nicotinic acetylcholine receptor beta3 (nAChRbeta3) gen...
متن کامل